
Customization, reusability and near-miss design 
 

Martin S. Feather 
USC / Information Sciences Institute 

4676 Admiralty Way 
Marina del Rey, CA 90292 

U. S. A.  
feather@isi.edu 

 
In ‘Automating Software Design: Interactive Design’ Workshop Notes from the Ninth National 
Conference on Artificial Intelligence (AAAI-91), pages 34-39. Workshop Notes available as 
Technical Report No. RS-91-287 from Information Sciences Institute, 4676 Admiralty Way, Marina 
del Rey, CA 90292, USA. 
 
1 Introduction  
 
Reusable software components offer the promise of facilitating the rapid construction of large and 
complex software systems. One of the impediments to the success of this approach, however, is the 
tension between making reusable components as widely applicable as possible, while retaining 
their individual simplicity and effectiveness. Wide applicability of individual components is 
desirable so that they can be reused in many circumstances, thus avoiding having to populate such a 
library with many similar versions of each component. Conversely, the more options and features 
that are built in to a single component, the less simple it is to construct in the first place, and the 
more work is required to correctly instantiate it for some given use.  

‘Evolution transformations’ are suggested as a means to alleviate this dilemma. Applied to a 
software component, an evolution transformation changes the meaning of that component in some 
well-determined manner. This promises to make a library of software components more versatile it 
is no longer necessary to retrieve a component that exactly matches the case in hand; rather, a 
component close to the need would suffice, after which evolution transformations would be applied 
to customize it appropriately. This means the library can be smaller, and individual components can 
be simpler. Furthermore, the organization of components in the library can profitably use these 
evolution transformations as the relationships between pairs of closely related components, neither 
of which is a strict refinement of the other.  

What does this have to do with interactive design? If brings to the fore a mode of interaction 
concerned with mismatch and evolution, rather than with selection and instantiation. If this is so, it 
is appropriate to consider how interaction can support this activity.  

These ideas are, to date, merely ideas. Within the ARIES project (of ISI and Lockheed Sanders 
[7]), we have developed and used evolution transformations to help in requirements acquisition and 
specification construction [6, 5]. However, we have not (yet) investigated the above hypotheses for 
software component libraries. Nevertheless, it is on the basis of the insights gained from our 
experience with evolution transformations that my above proposals are formulated. The next 
section offers a simple example of specification and evolution as brief illustration of the above 
points. In the final section I make some observations on the implications of this approach for 
interactive design, relating these general observations to specific points of the example.  



2 Example of Specification and Evolution  

The example will present a simple initial specification, two different evolutions of that 
specification, and finally the specification that combines both of those evolutions. Two points 
should be borne in mind while viewing this example:  

• The example deals only with specifications of a task, not the programs that would actually 
implement those specifications. This is a consequence of our particular view of requirements, 
specification and implementation. We look to program transformation to bridge the gap between 
specification and implementation. Preliminary results suggest that the transformational 
development of a specification can be reused to good effect to facilitate the transformational 
development of an changed (evolved) version of that specification [4, 3]. Furthermore, we believe 
that for most real-world problems the development of a formal specification is itself a difficult 
activity, in many cases more difficult than the subsequent implementation from that specification. 
Thus, since transformational implementation is not the focus of this paper, we deal only with 
specifications and their evolutions. 

• The simple initial specification that begins the example might seem too simple. Such 
simplicity is deliberate, however, because it allows us to start from an idealized abstraction of the 
problem, and thereafter incrementally and independently introduce the details that characterize 
more realistic versions of the specification.  

2.1 Evolution Example - Retail Company  
The example concerns inventory control within a retail company, and is loosely based on the 
specification given in [9]. Briefly, this involves a stock of parts, customers ordering parts, and a 
factory restocking parts when the company's stock is exhausted. It is easy to imagine that a library 
of software specification components would contain descriptions of systems of this nature.  

Since the primary goal is to illustrate the issues of near-miss specification and customization, I will 
not provide descriptions of the specification language or evolution transformations beyond those 
necessary to motivate this example. More details of the specification language, Gist, and the role of 
evolution transformations in the parallel elaboration of specifications can be found in [2].  

2.2 Simple initial specification  

We begin with the specification of an extremely simple instance of such a company and its 
operating environment (namely, customers that issue orders, and factory that replenishes parts). 
This captures the spirit of the operations of a retail company, but avoids many details. An 
explanation of the concepts used follows the specification.  
 
type part;  
 
relation Owner(part,  
               owner:customer union retail-company union factory) ;  
 
type order;  
 
relation Customer(part.customer) };  
 
type customer with  
{ demon ISSUE-ORDER() := create order with  
       { Customer <- (the customer) } };  



 
type retail-company with  
{ demon HANDLE-ORDER(order)  
  when start extant order  
  := let ( p:part | p.Owner = (the retail-company) )  
      p.Owner <- order.Customer;  
 
demon REPLENISH()  
when start not exists (p:part)  
          p.Owner = (the retail-company) 
:= ASK-FOR-REPLENISHMENT() };  
 
type factory with  
{ var replenishment-quantity:integer;  
procedure ASK-FOR-REPLENISHMENT()  
:= loop for x from 1 to replenishment-quantity 
   do create part with { Owner <- (the retail-company) } }  

Types and relations model information in the retail-company world: part, order, customer, 
retail-company and factory are declared as types; objects in the specification will be instances 
of these. Customer and Owner are declared as binary relations - the former relates objects of type 
order to objects of type customer, while the latter relates objects of type part to objects of the 
union of the types customer, retail-company and factory.  

Relations queries retrieve objects associated with other objects, e.g., order.Customer retrieves the 
customer object that is associated to order by the Customer relation.  

Execution of statements changes this information by creating or destroying objects, and by 
inserting or removing relationships among objects. E.g., p. Owner <- order.Customer changes 
the Owner relationship between part p and its current owner to instead relate p to the customer 
object denoted by order.Customer - i.e., this statement models the transfer of a part to the 
customer who issued the order (and furthermore, because the part was selected to be one whose 
owner was the retail company - p:part | p.Owner = (the retail-company) - the transferred 
part must come from the retail-company. Object creation is illustrated in create order with { 
Customer <- (the customer) }, which creates a new object of type order and puts it into the 
Customer relation with the object denoted by the customer (because of the context in which this 
occurs, this is the customer who is creating the order).  

Procedures provide the usual procedural abstraction. Here ASK-FOR-REPLENISHMENT is used to 
communicate between the retail-company and the factory.  

Demons cause activity to happen in response to situations arising. E.g., HANDLE-ORDER has the 
keyword when followed by the condition (a predicate) start extant order. When this predicate is true 
(i.e., when the order first comes into being), the demon initiates its response (the statement 
following the := symbol). In this case, the response is the activity to transfer a part to the customer. 
Omitting the when and its condition is equivalent to nondeterministically choosing to perform the 
response (as in the ISSUE-ORDER demon, modelling customers unpredictably issuing orders to be 
filled by the retail company). The instance of the type to which a demon belongs is the object 
which is said to be performing the response, e.g., the retail-company performs the response of the 
HANDLE-ORDER demon, individual customers perform the response of the ISSUE-ORDER demon, etc.  



There are a number of obvious ways in which the above is trivial, e.g., there is only one kind of 
part; an order is always for a single part. The purpose is to capture the 'essence' of the retail-
company notion in this specification. We examine next how to use evolution transformations to 
introduce more details, exceptional cases, etc.  

2.3 Evolving the initial specification to have multiple kinds of parts  

As the first example of evolution, consider that there could be different kinds of parts. Thus, 
customers' orders must additionally specify the kind of part, the HANDLE-ORDER demon must give 
the customer the appropriate kind of part, and the REPLENISH demon must ask for replenishment of 
the appropriate kind of part when the company stocks of that kind are exhausted. Essentially, we 
must parameterize the specification where it deals with parts to take into account the kind of part. 
The end result of this is the following slightly more complicated specification (new or changed 
lines are marked with | at the left):  
| type kind;  
 
  type part;  
 
  relation Owner(part,  
                 owner:customer union retail-company union factory) ;  
 
| relation Part-Kind(part,kind);  
 
  type order;  
 
  relation Customer(part,customer);  
 
| relation Order-Kind(order,kind);  
 
  type customer with 
  { demon ORDER()  
    := create order with  
       { Customer <- (the customer),  
|        Order-Kind <- (any kind) } };  
 
  type retail-company with  
  { demon HANDLE-ORDER(order)  
    when start extant order 
    := let ( p:part | 
             p.Owner = (the retail-company) 
|            and  
|            p.Part-Kind = order.Order-Kind ) 
       p.Owner <- order.Customer;  
 
| demon REPLENISH(k:kind)  
| when start not exists (p:part)  
|         p.Owner = (the retail-company) and  
|         p.Part-Kind = k  
| := ASK-FOR-REPLENISHMENT(k) };  
  type factory with  
  { var replenishment-quantity:integer;  
 
| procedure ASK-FOR-REPLENISHMENT(k:kind)  
  := loop for x from 1 to replenishment-quantity 
     do create part with  



        { Owner <- (the retail-company), 
|         Part-Kind <- k } }  

When an order is created, in addition to inserting it into the Customer relation with the customer 
creating that order (Customer <- (the customer), as before), it is also inserted into the new 
Order-Kind relation with some non-deterministically chosen kind (Order-Kind <- (any kind)). 
When an order is handled, the part transferred to the customer must also be of the appropriate kind 
(ensured by p.Part-Kind = order.Order-Kind). Finally, when replenishment occurs, it is for a 
particular kind of part. Note however that the replenishment quantity has not been parameterized 
by the kind of part being replenished, although it certainly could have been. There are obviously 
numerous variations on how the parameterization is actually performed, each of which would give 
rise to a slightly different specification.  

2.4 Evolving the initial specification to have quantities in orders  
In a different evolution, we introduce the notion that each order has a non-zero quantity. Note that 
this is an evolution of the original specification, not of the specification evolved to have multiple 
kinds of parts. This is to separate concerns, and retain simplicity.  
 
  type part;  
 
  relation Ovner(part,  
                 owner:customer union retail-company union factory);  
 
  type order;  
 
  relation Customer(part,customer);  
 
| relation Quantity(order,integer)  
 
  type customer with  
  { demon ISSUE-ORDER() 
    := create order with  
       { Customer <- (the customer), 
         Quantity <- (any i:integer | i>O) } };  
 
  type retail-company with  
  { demon HANDLE-ORDER(order) \ 
    when start extant order  
|   := let ( q:integer | order.Quantity = q, 
|            setp:setof(part) |  
|              size(setp)= q and  
|           for-all (p:part) p in setp => p.Owner = (the retail-company) ) |  |  
|      atomic (loop (p over setp)  
|              do p.Owner <- order.Customer);  
 
  demon REPLENISH()  
  when start not exists (p:part)  
            p.Owner = (the retail-company) 
  := ASK-FOR-REPLENISHMENT() };  
 
  type factory with  
  { var replenishment-quantity:integer;  
 
  procedure ASK-FOR-REPLENISHMENT() 



  := loop for x from 1 to replenishment-quantity 
     do create part with  
        { Owner <- (the retail-company) } }  

The more complex form of the statement of HANDLE-ORDER essentially selects a set of parts such 
that the size of that set is the quantity of the order (size(setp) = q) and each element of that set 
is a part owned by the retail-company (for-all (p:part) ... ).  

There may be a problem with the above specification if a customer orders a quantity of parts 
greater than the company's stock, in which case the order will not be handled until the level of stock 
is replenished to (at least) the quantity of the order (which need not necessarily occur if the 
replenishment quantity is small relative to the order). This could be dealt with by having HANDLE-
ORDER divide large orders into two, so that the first portion can be filled immediately, while the 
remainder is put on back-order, or alternatively having pending orders cause a request for an 
appropriate quantity of replenishment. We will not pursue either of these options here, but clearly 
any reasonable codification of this knowledge would either add these as further evolutions, or at 
least keep some record of the potential inadequacies of this specification.  

2.5 Combining evolutions  

Having evolved the specification in two different ways, we now consider how to bring those 
together, i.e., how to achieve a single specification with part kinds and order quantities. The 
advantage of this approach is that it encourages the explicit consideration of the interactions that 
arise during combination.  

In combining our two evolutions of the initial specification of the retail company, we most likely 
would wish to allow customers to issue orders which can have different quantities for various kinds 
of parts, and have the retail company handle such orders accordingly. We may need to take a 
moment to consider how the requirement on the quantity of an order being non-zero (this 
requirement is embedded in the ISSUE-ORDER demon) is to be evolved. Presumably, we wish to 
insist only that the total quantity of parts ordered is non-zero, not that the number of parts of each 
kind be non-zero. Other than this detail, combination is relatively straightforward, although leads to 
a yet-larger specification than the initial specification, or either of its evolutions (as should be 
expected).  

The specification that results is shown below - each order is related to some number of suborders, 
each of which is related to a kind and a quantity. When an order is created, a suborder for some 
non-zero quantity of each kind of part is optionally created, subject to the postcondition that there 
must be a suborder for at least one kind of part (thus ensuring that the total quantity of parts ordered 
is non-zero, without requiring that the number of parts of each kind is non-zero, as discussed 
above). When an order is handled, the appropriate set of parts of appropriate kinds is transferred to 
the customer.  
 
type kind;  
 
type part;  
 
relation Owner(part,  
               owner:customer union retail-company union factory);  
 
relation Part-Kind(part,kind);  
 



type order;  
 
type suborder;  
 
relation Customer(part,customer);  
 
relation SubOrderOf(suborder,order);  
 
relation Order-Kind(suborder,kind);  
 
relation Quantity(suborder,integer);  
 
type customer with  
{ demon ISSUE-ORDER() 
  := atomic  
     (create order with  
        { Customer <- (the customer) }, 
      loop (k | kind)  
      do optionally  
         create suborder with 
         { SubOrderOf <- order;  
           Order-Kind <- k;  
           Quantity <- (any i:integer | i>O) }  
     postcondition exists (s:suborder) SubOrderOf(s,order) ) };  
 
type retail-company with  
{ demon HANDLE-ORDER(order) 
  when start extant order  
  := loop (s | SubOrderOf(s,order) )  
     do let ( q:integer | s.Quantity = q,  
              setp:setof(part) |  
                 size(setp)= q and  
                 for-all (p:part) p in setp =>  
                     p.Owner = (the retail-company) and  
                     p.Part-Kind = s.Order-Kind ) 
        atomic (loop (p over setp) do p.Owner <- order.Customer);  
 
demon REPLENISH(k:kind)  
when start not exists (p:part) 
        p.Owner = (the retail-company) and p.Part-Kind = k  
:= ASK-FOR-REPLENISHMENT(k) };  
 
type factory with  
{ var replenishment-quantity:integer;  
 
procedure ASK-FOR-REPLENISHMENT(k:kind)  
:= loop for x from 1 to replenishment-quantity  
   do create part with  
      { Owner <- (the retail-company),  
        Part-Kind <- k } }  

3 Implications for interactive design  

3.1 Libraries, instantiation and evolution  
In the retail company example, extra details introduced in both of the evolutions added to the size 
and complexity of the specification. Furthermore, even for the simple evolutions of this example, 



further options were apparent (e.g., whether or not to parameterize the replenishment quantity by 
the part kind). In general we may expect a single specification that encompassed a broad range of 
retail company possibilities to be rather large and complex. Alternatively, providing coverage (in a 
library of components) by populating that library with a multitude of versions of retail company 
like specifications would lead to a library of unwieldy size. Our hope is that evolution offers a third 
alternative, in which the library's content of components is complemented by an array of evolution 
transformations. The user would select a component near to the one wanted, and then use evolution 
transformations to customize that component. Because similar evolutions can be applied to many 
different components (e.g., parameterization is a very general concept), they effectively multiply 
the size of the library. This is at the cost of requiring a different form of interaction with the user, 
one involving sequences of evolution rather than the traditional instantiation of a generic 
component.  

3.2 Refinement, evolution and designing from ideals  
The incremental style of development (of programs, specifications or requirements) in which an 
initial very abstract formulation of some task is incrementally refined to introduce successive levels 
of detail has been well-studied and has advantages. Our evolution transformations are not limited to 
pure refinement; in the retail company example, the introduction of quantities into orders and their 
handling gave rise to new possibilities of 'starvation' (large orders that remain unfilled) that are not 
readily seen as refinements of the behaviors of the initial specification. Evolutions thus offer an 
extension of the paradigm. One consequence ofthis is that it is possible to start with much more 
idealized statements of specifications, relying upon evolution to retract the unrealistic assumptions. 
The development history then records how thos~ ideals were compromised. This history is useful 
for both clear exposition and future maintenance: if changes occur to the environment surrounding 
the software, then it may be possible to look back through the development history and see how to 
adapt to those changed conditions. Without such a history, that is, left with only the end-product of 
a design process, we would be forced to rediscover design decisions in the face of change.  

3.3 Knowledge organization and composition  
It is clear that other approaches to structuring and manipulating knowledge organized as software 
components will continue to have application - evolution transformations should supplement, not 
supplant them. Composition of components is one such approach (e.g., ACT TWO [1]). In the retail 
company example no mention was made of scheduling the handling of customer orders the 
specification denoted all possible schedulings, without imposing any criteria such as handling 
orders in the order in which they were received. I consider scheduling to be a basic notion which 
has its own space of elaborations (structured using refinements and evolutions, of course) to 
provide alternative scheduling strategies (e.g., FIFO, priority levels) and elaborated behaviors (e.g., 
putting requests on hold, cancellation, preempting). A realistic retail company specification will 
compose ordering and replenishment activity with scheduling concepts and mechanisms. 
Organization of these classes of components (scheduling, inventory control, etc) may well follow a 
more traditional hierarchical form such as that suggested by the Requirements Apprentice's cliché 
library [8].  

3.4 Near-miss specification and mismatch discovery  

If near-miss specification using evolution and customization is to be put into practice, it requires 
support not only for conducting evolution but also for detecting the need for evolution. It would no 
longer be the case that an 'incorrect' specification (or piece of specification) arose rarely and only 



by mistake, rather it would be the norm to expect to progress through an alternation of mismatch-
detection and evolution. Comparisons between the state of the design so far and other descriptions 
that the user provides (e.g., scenarios of system behavior, concrete examples, specific viewpoints) 
would become the focus of the design activity, and comprise a major part of communication 
between system and user. Selection of the appropriate evolution is one of the key steps of this 
proposed methodology, and should be a cooperative activity blending machine capabilities and 
human responsibilities. Human input is required to indicate deficiencies in the current form of the 
specification, or provide further information (the other descriptions referred to above) which the 
system can detect deficiencies. The machine can then search for all the evolutions that would 
potentially correct these deficiencies. Finally the human picks out the particular evolution(s) to be 
applied. In our ARIES system we employ this strategy to pick the evolution transformations to be 
used for specification construction [5], and it seems reasonable to suppose that the same strategy 
will apply to customization of specifications.  
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